Ultracold atoms in optical lattices with random on-site interactions.
نویسندگان
چکیده
We consider the physics of lattice bosons affected by disordered on-site interparticle interactions. Characteristic qualitative changes in the zero-temperature phase diagram are observed when compared to the case of randomness in the chemical potential. The Mott-insulating regions shrink and eventually vanish for any finite disorder strength beyond a sufficiently large filling factor. Furthermore, at low values of the chemical potential both the superfluid and Mott insulator are stable towards formation of a Bose glass leading to a possibly nontrivial tricritical point. We discuss feasible experimental realizations of our scenario in the context of ultracold atoms on optical lattices.
منابع مشابه
Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media. We report on the direct measurement of superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms in an antiferromagnetically ordered state, we measured coherent superexchange-mediated spin dynamics with coupling e...
متن کاملBond Order via Light-Induced Synthetic Many-body Interactions of Ultracold Atoms in Optical Lattices
We show how bond order emerges due to light mediated synthetic interactions in ultracold atoms in optical lattices in an optical cavity. This is a consequence of the competition between both shortand long-range interactions designed by choosing the optical geometry. Light induces effective many-body interactions that modify the landscape of quantum phases supported by the typical BoseHubbard mo...
متن کاملVIEWPOINT Atoms Oscillate Collectively in Large
O ptical lattices are key elements in the effort to use ultracold atoms for quantum simulation, quantum computing, and atomic clocks. These lattices rely on light forces to precisely hold atoms in space and to individually control their internal states [1]. Researchers strive for nearly perfect periodic lattice structures using state-of-the-art laser systems, but the atoms can interfere with th...
متن کاملUltracold atoms in optical lattices: tunable quantum many-body systems
Cold atoms in optical lattices offer an exciting new laboratory where quantum many-body phenomena can be realized in a highly controlled way. They can even serve as quantum simulators for notoriously difficult problems like high-temperature superconductivity. This review is focussed on the recent developments and new results in multi-component systems. Fermionic atoms with SU(N) symmetry have e...
متن کاملBose-Einstein condensation of particle-hole pairs in ultracold fermionic atoms trapped within optical lattices.
We investigate the Bose-Einstein condensation (BEC, superfluidity) of particle-hole pairs in ultracold fermionic atoms with repulsive interactions and arbitrary polarization, which are trapped within optical lattices. In the strongly repulsive limit, the dynamics of particle-hole pairs can be described by a hard-core Bose-Hubbard model. The insulator-superfluid and charge-density-wave- (CDW) su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 17 شماره
صفحات -
تاریخ انتشار 2005